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1. Introduction

The AdS/CFT correspondence [f]] is a concrete realization of the holographic principle [P-
in the sense that the CFT defined on the boundary of the AdS space is believed to
capture the full dynamics of string theory in the bulk. One may say that the boundary of
the AdS serves as the “holographic screen.”

Given that the holographic principle, including the notion of the holographic screen,
has its origin in black hole thermodynamics, the recurring appearance of black holes in the
development of the AdS/CFT correspondence should come as no surprise. For example,
recent applications of the AdS/CFT methods to the hydrodynamic regime of strongly



coupled field theories [§—[[(] bear strong resemblance to the membrane paradigm of black
hole physics [L]—-[L3].

When the AdS space contain a black hole inside, one encounters an interesting situation
where the two holographic screens — the black hole horizon and the AdS boundary — exist
at the same time. It appears that questions on black hole dynamics can be addressed from
the two “dual” points of view. For instance, while traditional approaches to understand
the black hole entropy have often considered degrees of freedom living on the horizon,
AdS/CFT suggests that the dual CFT on the AdS boundary should give a microscopic
explanation of the entropy.

If both the traditional picture and the AdS/CFT picture make sense, it is conceivable
that there exists some mapping which relate physical quantities on the two holographic
screens as well as the equations governing them. Exploring the possibility of such a mapping
was a key motivation which initiated this work.

Recently, in [[4], the description of the CFT in terms of fluid dynamics was used to
make striking predictions on the thermodynamics of black holes in AdS. Fluid dynamics is
valid when the fluctuation of the CF'T is macroscopic. This translates to the condition that
the black hole should be “large” in a technical sense we will review in section 2. Among
other things, the result of [[4] shows that large black holes exhibit universal dependence
on the rotation parameters in the sense of (R.§) below.

The main goal of this paper is to study the properties of large black holes from the
opposite side, namely, the black hole horizon, bearing in mind the original motivation
mentioned above. For simplicity, we focus on the extremal limit where the entropy function
formalism [[[j—[[7 enables us to extract physical informations without dealing with all the
field equations. Although most of our analysis does not rely on supersymmetry or number
of dimensions, we focus on black holes in gauged supergravity in five dimension because
AdS5;/CFTy with supersymmetry offer more examples of dual pairs than any other cases,
of which both sides of the duality have explicitly known Lagrangian descriptions.

We derive the near horizon equations of motion and the entropy function for general
extremal black holes in AdS5. Then we specialize to the large black hole limit and verify
that, to the leading order, the near horizon equations admit a universal solution with a

factorized dependence on the rotation parameters, in the sense of (B.39) and (4.39), (4.39).

We then make a detailed comparison with the predictions from fluid dynamics of [[[4] and
find perfect agreement. In addition, we show how the near horizon equations determine the
charge dependence of the thermodynamic potentials (at zero temperature), which cannot
be inferred from the analysis of fluid dynamics alone.

This paper is organized as follows. Section 2 covers some preliminary materials. We
first establish our notations on gauged supergravity. Then we briefly review the predictions
from fluid dynamics [[4] on the properties of large black holes in AdS. We also illustrate
salient features of the large black hole limit using a simple example in the minimal su-
pergravity. Section 3 and 4 present the main computations of this paper. In section 5,
we elaborate on the comparison between our results and the results from fluid dynamics,
comment on the implications of our results on the thermodynamic property of the CFT,
and conclude with some future directions.



2. Preliminaries

2.1 Gauged supergravity in five dimension

We will work with D = 5, A/ = 1 gauged supergravity theories with n abelian vector fields.
The bosonic part of the Lagrangian is

1 - 1 1
(167TG)£ = *(R — QV) - §gijd<p’ N *dp? — §Q[JFI AxFT — ECIJKFI ANFTA AK(Q.l)
The (n — 1) scalars, ¢!, parameterize a hypersurface in R,
1 IyvJyvK
EC’UKX X X* =1. (2.2)
The real constant coefficients Cy s define the “real special geometry,” !
1
Xr = §CIJKXJXK, Qrr = X1 X5 — Cryx X", g =QuoiX'9;X7.  (2.3)
The scalar potential in (R.1]) is specified by some constants Xr
V=Q" X X; - (XX (2.4)

The supersymmetric extremum of the potential is located at X;|, = X, where V|, = —6.
This amounts to setting the AdS radius to be unity: R,, = —4g,..

All supergravity theories of the form (R.I)) contain the minimal supergravity as a closed
subsector, as one can see by setting

X;=X;, Al=X'A (2.5)

Classically, the overall normalization of Cj i is a matter of convention, since the La-
grangian (2.])) is invariant under

Crig — )\3C[JK, Al — )\_IAI, Xt txl (2.6)

There are many examples of gauged supergravity theories of which the dual CFT is
known explicitly. Upon truncation to the massless abelian sector, the famous AdSs x S°
string theory leads to the U(l)3 theory with Ci23 = 1 and all other components of Crjg
vanishing. Orbifolds of S® corresponds to quiver gauge theories. Another very large class
of N =1 CFTs arise from D3-branes probing toric Calabi-Yau cones and are efficiently
described by the brane tiling model [L9—R1]. The coefficients Crx of the corresponding
supergravity theories are given by the area of the triangles in the toric diagram [3, 3.

'We follow the conventions of [E] except that QU%® = 2Q¢™® and Xbere = gxthere,



2.2 Predictions from fluid dynamics

According to the AdS/CFT correspondence, a black hole in a global AdS space corresponds
to a thermal ensemble of the states in the dual CFT with the same quantum numbers as
the black hole. In the AdS;/CFT, case under discussion, the relevant quantum numbers
are the energy F, the charges (J; and the two angular momenta J,.

At sufficiently high temperature and/or density, the CFT is expected to admit an
effective description in terms of fluid mechanics. In [[4], this expectation was combined
with known properties of static black holes to make predictions on rotating black holes,
which were then verified in all known rotating black hole solutions in the literature. We
briefly summarize the result of [[4] here.

In the static case, conformal invariance and extensivity dictates that the grand canon-
ical partition function of the fluid take the form

In Zye = VT3h(u/T), (2.7)

where u! are the chemical potentials conjugate to the charges Q. V and T represent the
volume and the overall temperature of the fluid.

It is not known how to compute the function h(u/T) or the equation of state of the
static fluid directly from the CFT. But, if a charged static black hole solution is known,
they can be read off using AdS/CFT. The equation of state of the static fluid is taken
as an input into the relativistic Navier-Stokes equations that govern the dynamics of the
conformal fluid in general.

A key observation of [[[4] is that there exists a unique family of ideal fluid solutions to
the Navier-Stokes equation in one to one correspondence with rotating black holes, which
are simple enough to be written down explicitly. In the five dimensional case, the solution
can be summarized by the grand canonical partition function for the rotating fluid,
(E—p'Qi—9%)]  VI3h(u/T)

T Ta-oi-ag)

where E and Q° represent the energy and the angular velocities of the fluid respectively.

InZe. =InTrexp |— (2.8)

Note that the solution is universal in the sense that the rotation dependence factorizes and
is independent of the function h(u/T). All the physical observables, such as the energy,
entropy, charges and angular momenta can be obtained by differentiating (R.§) by the
conjugate variables.

Fluid dynamics becomes a good description of the CFT if and only if the “mean free
path” li,¢, of the conformal fluid is much smaller compared to the volume of the fluid which
can be taken to be of order one. An estimate of Iy, is given by [[4]

S
ATE |y’

where S is the entropy of the black hole. For uncharged black holes, Iy, is simply propor-

(2.9)

lmfp ~

tional to 1/7T". For charged black holes, l,,s, depends also on the chemical potentials such
that it is possible to take an extremal (T — 0) limit while keeping all physical quantities
finite and g small. In the following sections, we will show how the results of [[4] is
reflected on the near horizon geometry of the extremal black holes.



2.3 Extremal black hole in minimal supergravity

In the minimal gauged supergravity, the most general four parameter family of black hole
solutions was obtained in [R4]. We study the extremal limit of the general solution and
take a close look at the near horizon geometry, so that we can use the result of this section
as a guide when we study more general theories in later sections.

The solution of [P4], with our normalization for A as in (R.§), is given by

Ay [(1 + ¢2r2) p2dt + 2qv] dt Ay dt 2 p2dr?
gs? — Dol +g7r7)p7dt + 2] +i<9 _w> L P

E1 5y p? PP \E15y A,
2402 9 2 .2 2, .2
+p + qz;w + r j U gin? quﬁ% + ! j 92 cos? quﬁg, (2.10)
Ag p = =2
Ag dt
A=z (JL —w) , (2.11)
Y= =)
where
p? = 1?4 a2 cos’ 0 + alsin® 0,
E1=1-ad?, Zy=1-d3,
v = agsin® 0dp; + ay cos? Odgs
d d
w = aj sin® 9@ + ay cos? 9$ ,
=1 =9
Ay =1 —a3cos’0 — a3sin?6,
f = 2mp* — ¢* + 2a1a2qp* , (2.12)
and
(r? 4+ a?)(r* + a3)(1 + r?) + ¢* + 2a1a2q
A, = 1 2 > —2m. (2.13)
The physical quantities characterizing the solutions are given by [24, Rj:
2
™ q 3qri
Q = — 5 = 9 214
4G (1 —a?)(1 — a?) a (r% +a})(r3 + a3) + a1a2q (2.14)
7 7 2a1m + qaz(1 + a?) 01(7“3. —|—a§)(ri+1)+a2q (2.15)
1= = ; 1= ; :
16 (1-aP(i-ad) (2 +ad)(r? +a3) + arang
J 7 2aam + qai(1 + a3) 0 02(7“3. + a%)(ri +1) +aiq (2.16)
9 = — s 92 = ; .
16 (1-ari-a) (2 +ad)(r? + a3) + arang
g 77_2 (7‘_2|r + a%)(ri +a2) + ajazq B ri(l—l—a%+a%+2ri)—(a1a2+q)2 (217)
26 ri(1—a®)(1—dd) 7 2rry [(r2 +a?)(rl +a3)+arazq]
B 1m(3—a%—a%—a%a%)+2qa1a2(2—a%—a%) (2.18)
4G (1 —a?)2(1 — ad)? ' '

The zeros of the function A, give the locations of the horizons. Since r2A, is a cubic

polynomial of r2, we can write

PPA, = (r? = r)(r? =) —r2). (2.19)



We assume that r2 > rg > r2 by definition. Comparing (R.13) and (B.19), we note that

i+ = —(af +a3+1),
7‘3?“8 + 7“87“3 + r%ri = a% + a% + a%a% —2m,
rirgr? = —(aras +q)?, (2.20)

which implies that r2 > rZ > 0 > r2. We can use (B-20) to show that the numerator of
the expression for the temperature (R.17) can be rewritten as

r2(rf —rd)(rt —r2). (2.21)

Therefore, in the extremal case, T' = 0, ri must coincide with TS, as one may have expected
on general grounds.

In general, the solution (R.1(), (B.11) has four parameters, (m,q,a;,az). Extremality
imposes a constraint, so m can be regarded as a function of a1, as and ¢g. We find it more
convenient to use (ry,a,as) instead of (g, a1, as) as independent parameters. The reason
is that while it is easy to solve (R.20) for ¢ (with rq =ry),

qzri¢r+ﬁ+n§+%i—am% (2.22)

it is difficult to invert this relation to express r4 in terms of a1, as and ¢. The parameter
m is also easily expressed as a function of a1, as and ry,

2m = 3r1 + 2r1 (1 + a} + a3) + af + a3 + aial. (2.23)

Let us now discuss the allowed values of (r, a1, as). The temperature and entropy are
non-negative if and only if r is non-negative. Without loss of generality, we can assume
that Jq, Jo and @ are all positive. It then follows that a1, as and ¢ should be positive. For
the angular momenta Ji, Jo, charge Q and mass E to be finite, we also have a?, a3 < 1.

It was shown in [24] that the black hole is supersymmetric if and only if

ri =aj + as + ajas. (2.24)

In the space of extremal black holes, there is a sense in which BPS black holes are the
smallest ones. The Euclidean action for the black hole solution was computed in [RH:

I
4G (1-— a%)(l - a%)

¢*ri
(r2 4+ a?)(r2 + a3) + ara2q

I m— (r} +a3)(ri +a3) — . (2.25)
The black hole is thermodynamically stable compared to thermal AdS only if the Euclidean
action is positive. This is analogous to the Hawking-Page phase transition [RG] of AdS-
Schwarzschild black holes. From (P.2§), we find that the extremal limit of the critical
surface I = 0 coincides with the BPS condition (R.24). For fixed values of a; and as, the

black hole is stable only if 72 is greater than or equal to the BPS value (-29).2

2Extra care should be taken for BPS black holes. It was shown in [ﬁf E] that the correct thermodynamic
variables are not the BPS values of Q% and p, but their next to leading coefficients in a near extremal
expansion. It was also shown that there is a phase transition in the (a1, a2) plane. We thank P. Silva for
drawing our attention to these references.
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Figure 1: Moduli space of extremal black holes.

Figure [l depicts the a; = as (= a) slice of the resulting domain. Only the region on
the right side of the BPS curve is physical. The value of ¢ in (R.29) is positive throughout
the physical region. The mean free path /¢, is found to be [4], for large 7,

S 1

x —. (2.26)

Iy ~ ——
P AR E |6y T+

Thus we see that, as emphasized in [I4], the BPS black holes lie on the opposite extreme
of the “large black hole limit,” where the fluid mechanics becomes a good approximation.

One of the prediction from the fluid mechanics is that, in the large black hole limit,
the entropy takes the form,

T 23

Cicaoma -y

(2.27)

where v is inversely proportional to ly,g, up to a coefficient of order unity. In what follows,
we will take v as a measure of the effective size of the black hole, a convenient notion
especially when direct evaluation of /¢, is not available. Figure [] include the contours of
fixed values of v as well as contours of fixed values of ). Note that the effective size of the
BPS black holes vanishes, although their actual size can be arbitrarily large. The reason
for the discrepancy is that all BPS black holes have 2 = 1.

2.4 Near horizon geometry: a first look

For simplicity, we begin with the case where the two rotation parameters are equal, a1 = as.
To make the SU(2) C SO(4) symmetry manifest, we make the usual coordinate change,

0 % — P+
e = 7 = 7 2.28
2 ’ ¢1 2 ) ¢2 2 ) ( )

i

aSS!

0=
and introduce the invariant one-forms,

o1 = cosdf + SiIlTZJ sinfdg, oy = —sin 1/~1d§ + cos 1 sin édq;, o3 = dl/NJ + cos dé. (2.29)



The near horizon limit of the extremal solution takes a remarkably simple form:

d 2
ds® = v? (—qutz - u_u2> + 03 [(01)? + (02)?] +v3 (03 + avudt)?, (2.30)
A = eudt + bos, (2.31)

where the near horizon parameters are given by

g TETE g_rhte L (aPiae Voo
DTA(Br2 1262 + 1)) 2741 —a?) P 2ri(r2 +a?)(1—a?))
g aq
e = , b= , 2.33
2(r2 4+ a?)(3r% +2a + 1) 2(rt + a?)(1 — a?) (2.33)
a(l —a?) 2r2q
= 1 . 2.34
“ r+(3rt + 242 + 1) - (r2 + a?)? + a%q (2:34)

The large black hole limit in the sense discussed above is obtained by taking r, — oo while
keeping a fixed. In this limit, ¢ — \/§r§r, and the near horizon data reduce to

ICRE S S S SR S (2.35)
712 2 41 —a?)” B 41 —a2)? '
2 2 2v/2a(1 — a?
o= V2, _ V2ary QZM, (2.36)
6 2(1 —a?) 3
The physical quantities also simplify:
0= " Vard - 3art 5= 2773 | (2.37)
4G (1 — a?)? 4G (1 — a?)3 4G (1 — a?)?
7 3(a? + 3)r}
= 2 0= E=—-—- "+ 2.
H 3\/_7’+, a, 4G 2(1 _ag)g ( 38)

In the general case with a1 # a9, the near horizon limit for arbitrary values of
(ry,a1,a2) is quite messy, so we focus on the large black hole limit. To the leading order
in r4, the near horizon solution is given by (cy = cosé, sy = sin @)

1 du? r2 d6?
2 — 2 942 + 2 DD b 2.
ds 12 < e u? > Tz a?cl — a3sy FrGa(0)DF DY (239
A = éudt + by (0)Dp* (Do = dop® 4+ audt) . (2.40)

The U(1)? fibration part of the metric is rather non-tivial:

A A 1 — a2c2 a1a259Cy S0 Co
Gap = (LT"GL)w, G = 170 , L=diag| ———,—— | . (241
ab = Jab <a1b13909 1 — a3s? \1- a?’ 1 — a3 (2.41)

The other parameters in the solution are given by

V2

(al,a2) = —5 (ag(l — a%),al(l — az)) ) (2.42)
3ri
2 2
aisy  G2c _ V2
bi,by) = V2 = —. 2.43
(b1, b2) fr+<1_a%al_a%>a €= (2.43)



The physical quantities in the large black hole limit are given by

Vard

T
Q 4G (1_(1%)(1_&%)7 1% \/77'-‘1-7 ( )
T 3a17‘f1|_
oo 21 7 3(3—a? —a}—aiad)ri (2.46)
4G (1 —a})(1 —a3)’ T 16 201 - a2)2(1 — ad)? '

3. Extremal black holes - I. Equal rotation

We now begin our analysis of the near horizon geometry of black hole solutions in the
class of supergravity theories reviewed in section 2. In this section, we will focus on the
equal rotation case, in which the SU(2) isometry simplifies the computation drastically,
relegating the unequal rotation case to the next section.

3.1 Entropy function

The general near horizon solution of an extremal black hole in AdSs, with an SO(2,1) x
SU(2) invariance, take the following form:3

d 2
ds? = o} <—u2dt2 + u—“2> + 03 [(01) + (02)%] + v3 (03 + audt)?, (3.1)
Al = eludt + blog = ludt + bl (03 + audt), FL=eldundt —bloy Ao, (3.2)
X =4l

We follow the standard procedure of the entropy function formalism [1§-[[7]. First, we
integrate the Lagrangian over the horizon to obtain the “near horizon action”:

s 2 2 U 2a2 Q]JGIGJ Q[JbIbJ
F = —vh? 3 -2V
ehiacie ( % + U% 21)4 + v} + v} 205
o5 Crr (38" +200) BTV, (3.4)

The Chern-Simons term is slightly subtle. Inserting the ansatz (B.4) with constant &', b’
into the Lagrangian yields an incorrect result. To obtain the correct answer, one should
consider b! as a function of u, integrate by parts, and set b’ to be constant at the final
stage.* See appendix A for details.

The near horizon equations of motion can be derived by extremizing, F

OF OF OF
oo~ =% a0 (3.5)

while keeping (&, a) fixed. Explicitly, the equations read as follows.

3In the special case of the U(1)? theory, the entropy function for rotating AdSs black holes was previously
obtained in [E, E] Here, we consider the large class of gauged supergravity theories all at once. Related
discussions, including an AdS/CFT interpretation of the attractor mechanism, can be found in [@]

4We thank S. Trivedi and K. Goldstein for clarifying this point.



1. Einstein equation:

2 2.2 1.J
vy vz Qrie'e

— 4+ = — ) 3.6
v 205 v} 2u} (3:6)
1 v3  via? blb’
—2__2"‘ 34 :QIJ4 ) (37)
vy U 207 2v;
1 1
5+ — = 2V. (3.8)
v 0y
2. Maxwell equation:
Q1 [(v?v3vs) (e’ — vivy *b7)] — Crye’ ¥ = 0. (3.9)
3. Scalar equation:
v
aQIZ. (vl_4ele‘] — v2_4bIbJ) — 48 - =0. (3.10)
Oy e

Note that the scalar equation incorporates the constraint, 1Crsxufu’/u® = 1, by
means of a Lagrange multiplier. It is straightforward to confirm that the same equations
follow from writing down the full equations of motion and inserting the near horizon ansatz.

The electric charges and the angular momentum are the conjugate variables of (¢!, a)
with respect to F,

oF |, _ 1
Q=051 =7¢ [(Ul 2v3vs)Qrre’ — §CIJKbeK:| : (3.11)
oF |, _ 1
J = %0 - C [(01 2v3v3)(via+ Qryble’) — gCIJKbIbeK] - (3.12)
An alternative method to evaluate QJ; and J by using only the near horizon data in five
dimensional supergravity was given in B3, B4 (icos = —1),
_ 1 g1 Jp K
Qr = e /Sf‘; (QIJ*F + §CIJKA NF > ; (3.13)
1 . 1
J= 155 y [*dg + (ig AT) <QU*FJ + gCUKAJ A FK>] . (3.14)
hor

It is easy to check that the two methods give the same results.
The entropy function is the Legendre transform of the near horizon action:

E=Qre' +Ja—F

2 2.2 1.J IpJ
T 9 9 2 2 vy V5o Qriee Qrjb'b
= 3| 5 — 5 + — + +2V + + .
G 3<v% vi 205 2uf v} 205

(3.15)

I

To complete the Legendre transformation, the variables (e, «) in £ should be eliminated

in favor of the conjugates (Qr,J). Before doing so, we note that applying the Einstein
equations (B.4), B.9) to (B.15) yields the area law as expected;

472 A
L (Z%)h _ Sun. (3.16)

— 10 —



3.2 Large black hole solutions
Motivated by the large black hole limit of the minimal supergravity discussed in the pre-

vious section, we set

’ e
3741 — a2)?’

v

T (3.17)

W=

and consider the limit v > 1 with a fixed. We then try to solve the near horizon equations
by expanding the other variables in powers of 1/v.

3.2.1 Minimal supergravity revisited

As a warm up exercise, let us see how the minimal supergravity solution can be recovered
from the near horizon equations. Setting e/ = eX', b’ = bX7 in (B.4), (B.9), the equations
reduce to

2 2.2 2
V3 v 3e
— 43 = 3.18
v? + 2v3 v} 2v} ( )
1 2 2.2 3b2
S -8B (3.19)
V5 Ug 2v} 205
1 1
5 — — = 12, (3.20)
vy vy
(v 2v3v3) (e — vivy 1b) = 2eb. (3.21)

We can eliminate the a-dependent terms in (B.1§) and (B.19),

12 33 3e2  3p?
S+t s5—cIi1=+a1t 1 3.22
v v 205 20t vl (3:22)

Since the left hand side is O(1) in the leading order, we have two possibilities:
(a) e~ 0O(1), bSO, (b)eSO@™), b~O®W?). (3.23)

For the possibility (b), we find from (B.1§) and (8.19) that
2

U1 U2
a=+—, b=4=% .
U3 V3u;

This “solution” cannot be the near horizon geometry of a rotating black hole. As a — 0,

(3.24)

the black hole horizon becomes a round three-sphere, and we expect the black hole to
become static. But, in (B:24) the rotation parameter o and the magnetic dipole moment b
retain non-zero values even when a vanishes.

The true solution, which comes from the possibility (a), can be summarized as follows:

1 v2 v?
2 2 2
L S A S A 2
T Ty BT (3:25)
2 2 2v/2a(1 — a?
oo V2o, V2w o 2V2(l - a?) (3.26)
6 2(1 —a?) 3v?

— 11 —



The physical quantities also can be easily computed:
Q= T V208 J_7T 3av?t 5_77 203
4G (1—a?)2’” 7 4G (1—a?)3’ 7 4G (1 —a?)?’

Of course, all the results agree perfectly with the large, extremal limit of the general

(3.27)

solution we reviewed earlier.

3.2.2 General solution and universality

Since all supergravity theories contain the minimal supergravity, we expect the same v
dependence of the near-horizon parameters in the large black hole limit. To the leading
order in 1/v, the equations take the following form.

207 = 7 Qrse'e’, (3.28)
aQ[J I J 1 3V
vgvie’  Qub'bT _wj (3.30)
2v} 202 v :
V33 J K
—2 Qreta = Cryge’b™. (3.31)

1
Guided by the minimal supergravity solution, we introduce the reparametrization,

_ 9 B 5
a= (O‘—gl> 8v2a(1 —a?), bl = abl V2 (3.32)
v

2(1 —a?)’
In terms of the new variables, the equations (B.30), (B.31]) read,
a*(4 - Qrsb'v’) =1, (3.33)
Qrre’ — %CIJKEJBK =0, (3.34)

which are completely independent of the parameter a. The other two equations (B.2§), (B.-29)
are also independent of a. We conclude that the near horizon geometry of the large black
holes in AdS5 has a universal dependence on v and a, in agreement with the prediction of
the fluid mechanics of the dual CFT [[L4].

Let us now discuss how to solve the remaining equations. In a theory with n vector
fields, the extremal black hole solution (with equal rotation) depends on n + 1 parameters.
Physically, they correspond to n charges and the angular momentum. In solving the near-
horizon equations, we will choose the parameters to be v, ¢ and the n — 1 independent
values of (.

In principle, it is easy to see how to solve the above equations. First, (B.2§) and (B.29)
give n quadratic equations for {e’}, so that we can solve them to express {e!} as functions
of {¢'}. Second, (B-39) gives n linear equations for b’ in terms of {e!} (and ¢* through
Q17). Finally, (B-33) determines & in terms of b’.

In practice, the complete solution can be quite complicated because, in general, the
equations for e! lead to a polynomial equation of degree 2n. Some theories may have extra
symmetries to simplify the problem. Otherwise, one could look for a closed sub-family of
solutions which effectively lowers the value of n. We will discuss such an example shortly.
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3.2.3 U(1)? theory

To illustrate the algorithm to solve the near-horizon equations, we consider the U(1)3
theory with Cia3 = 1. This theory has many simplifying features such as u; = (uf)~!,
Q17 = (ur)?67; and V = —2(uy + ug + uz). The scalar equations can be written as

2ur + 2V2u3(e!)? = -V (3.35)

for each I (no sum). It is straightforward to solve all the equations, and the answer can
be written as

o (LiLaLg)™'? _ (1—Ly)
v] = 5> a= —, (3.36)
403, L7Y H 2L
I L?(l_LI) =T L](l—L])
el = — , b =-— R (3.37)
2(>°;L7Y) LiLaLs av2(LyLyL3)

Here, the variables Ly satisfy L; > 0 and Ly + Lo+ Ls = 1 (they are the same as X; defined
in section 6.2. of [[4]). This parametrization makes it clear that the physical quantities

™ [1—1Ljp v3 s 1 2av*
CEN T G T T G L) B R (3:38)

match perfectly with the 7' — 0 limit of the results found in B3, B, [4].5

3.2.4 A new solution

Next we consider an example of a theory of which no black hole solution is known in the
literature. It has the following non-vanishing components of C7 sk,

1
Cra3 = Ca3q = C341 = Cy12 = 1 (3.39)

This is the abelian truncation of the supergravity dual to the famous conifold CFT of [B7].
The four U(1) symmetries correspond to U(1) g symmetry, two mesonic symmetries and one
baryonic symmetry. The scalars can be decomposed according to which vector multiplet
they belong to:

X' =rdt4s, X2=r—t+sy, X3=r4+t—=s, Xt=r—t—so. (3.40)

The discrete symmetries of the theory makes it consistent to turn off the mesonic charges
and relevant scalars identically, s; = so = 0. The constraint %C’I JrXTX7 XK =1 then
becomes

1
PortP=1 = t=4/r2—Z ) (3.41)
T

where t is taken to be positive without loss of generality.

®To compare, for instance, our result with eq. (75) of [E], note that 7/4G = N?/2 in this theory and
that v here is identified with 27T(XY Z)Y3 /(X +Y 4+ Z — 1) there.

- 13 —



Following the general procedure described in the previous subsection, we first solve

1 1
Q]JGIGJ = —V, (87»62]])616] = —87» <V> . (3.42)

In the (r,t) basis, el = (e,, e;),

Q1) = (QW Qrt> _ (47‘4 —2r+ 772 —4rdt > (3.43)

Qm« Qtt —4T3t 47"4 — 2r
16r% — 2 — 2r=3 —2rt~1(8r% — 5)
0rQry = 3.44
Qrs (—2rt—1(8r3 —5)  16r°—2 (3:44)
1 431 1 8 —5
N 9 =)= 4
vV 1875 7 9 <V> 1876 (345)

Equations (B.49) can be solved for (e,,e;) in a closed form, though the answer is rather
complicated. The next step is to solve (B.34):

g 1 JIK __ 3er —ey 67" _ Qrr Qrt Er
Qrje’ — 50}]}(6 bt =0 — <—€t —67«> (615) = <QW Qtt> <€t>' (3.46)

Again, the answer for (b,,b;) can be written down explicitly. Finally, (B-3J) yields a and
complete the solution.

Although the explicit expressions for the near horizon solution are not very illuminat-
ing, this example clearly shows how the general method described above can be used to
solve all the near horizon equations.

4. Extremal black holes - II. Unequal rotation

4.1 Entropy function
Following [[L6, BY], we write down the near horizon ansatz for the most general rotating
black holes in AdSs. ©
du?
ds® = w?() <—u2dt2 + ?> + w2(0)dO? 4+ Gup(0)(do® + audt)(de® + aludt), (4.1)
Al = &ludt + bL(6)(do” + audt), (4.2)
X =1(6).

In the metric, we have two functions wy, w9 and three components of G,;,. One combination
out of these five can be removed by reparametrization of . The ansatz preserves SO(2,1)

5The entropy function of general rotating black holes in 5d ungauged supergravity was first considered
in [@] To our knowledge, the results in gauged supergravity presented here are new, apart from the general
near horizon analysis for supersymmetric black holes performed from a different angle in [@, @], to which
fluid mechanical considerations do not apply.
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symmetry realized by the Killing vectors, ”

L+1 =0, Lo=td —ud,, L_1= %(1/'&2 + t2)8t — (tu)@u — (a“/u)8¢a. (44)

In computing the near horizon action, the Einstein-Hilbert term deserves some com-

ments:
R = R; + Ry + R3, (4.5)
2 2002 i A Gapatal
wi  wjw; w1ws wiws 2w
R — (G809 Gha)* = (G™0pGhe) (G“109Gaa)  20p(wiwy ' 0pV'G) (47)
- 4w VGuiwy '

The metric ansatz ([£]) takes the form of a two-torus (¢!, $?) fibered over the “base” space
(t,u,d). The first term is simply the scalar curvature of the base space, where dots denote
derivatives in #. The last term is the contribution from the fiber metric. The second term
can be thought of as a “Kaluza-Klein” electric flux density. Combining with

V=9 = wiwyVG, (4.8)
we find

2 20?409V G 1
\/—_gR:w%wQ\/a<__2+ ;U1 w1 9\/_ Gapcr ab)

2
wy  wiws wlwg\/

2
) 1 [0VG G Gap | 1 2
+wtwy VG e ) T ] 2 (0 <w1 G) . (4.9)

The last term, being a total derivative, does not affect the equations of motion. However,

we will show that it makes a non-zero contribution to the entropy function.
Adding the matter contributions and evaluating the Chern-Simons term, we obtain

the near horizon action, 8

2 Gapalal T
= do -2V
F 4G5/ \/awlw2< w? * 2w} > 4G5 [ wo ( \/_>]

1

D2 l 2 ab

/2

4G5 w%w% wlng/@ w_% \/@ 411)%
/d@\/_w 0y Qryele’ QIJGabaGbgaGbi,] B 9ij 00" Opp’
4G5 ! 2w1 2w§ 2w§
- / d0 (20150 (36" + 2000 )eben] 9bE ) | (4.10)
4G5 6
where €2 = —1 = —¢2!. Upon taking a variation, we obtain the near horizon equations:

"It was proven in [@, @] that the near horizon geometry of any extremal black hole in four and five
dimensions, in a generic second order theory of gravity coupled to uncharged scalars and gauge fields
(including a cosmological constant) must have SO(2,1) symmetry.

81n this subsection, we denote the Newton’s constant by Gs to avoid confusion with G = det(Gas).
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1. Einstein equation

wq 5.7'— w9 5.7'—

@) 5o T 250y =

@%%wﬁ (Z—;ae (mw1)> - (4.11)

wq 5.7'— w9 5.7'— ab 5.7'—
®) 500 T 250, T O 50w

1
— +2V +
wy

=0:

- - = - - _I_ N
wiwVG  wi \ VG
0y G99 G ap n Gap®a N Qrse'e’  gij0p0' gy’

wl wl w2 wi1w9 w9

1wl 3, <@>+w189\/6 1 (aﬂ@)z

= 0.(4.12
4w§ w‘l1 2w‘1l 2w§ 0-( )
oF a OF
(C) w26—w2+G 5Gab 0:
2
4 <ﬂ>+2wlag\/é_ 1a 29V G + L 1 99V G
wiwy  \ ws wiw VG w2 ng/_ N
0pG0pGay  Gapa"a® Q1 G™dpbydgby gijae@iae@j _ 0.(4.13)
2w3 2wi 2w3 w3 o
OF 1 ed OF o
@ W‘E(G 5ch>G“b_0'

Xab - %(GCchd)Gab = 07
2 2
X = 1 [(‘)@ <\/fw1 8@Gab> — GocOp (wal (%G“l) Gdb]
2 2

\/Ew%wg
c d 9 I J
+2(Gac0é )ideOé ) n QIJaegaaebb' (4.14)
wy wy
2. Maxwell equation
\/E'LUQQ 6Jaa—|-8 <\/_le JG“bé)@bb> Crike e“bé)@b (4.15)

3. Scalar equation

2 \/_wl 8Q1J ele’ G“b(‘)gbéagbb‘] ov
. _ —4— =0. (41

wy wa
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The conserved charges are given by

oF G
Qr = =i /d@ <\/_w2Q1J€ - _CIJKeabbJaebK) (4.17)

5T
oé wy

0F Vw2 I_b K
a = a -3 N . (41

J das 4G5 /d9 [ 1 (G ba +Q1J€ ) CIJKb b agbc ( 8)
Finally, the entropy function is computed to be

E=Qre' + J,a* — F
2 Gapalal T
. /d@\/ who (5 -2V + =50 ) + =0y (w \/)
w2

w/2

4G5 2'UJ1 4G5
2
/d@\/_u) ws 2’(b1 4’(1)189\/@ + 1 89\/6 i aeGabaeGab
4G5 ! w%wg wlwzx/— \/a 4w%
Qrrele’! QIJG“baobéaebbJ 9ij 00" O’
do . 4.19

Using the equations of motion, we can easily confirm the area law for the black hole entropy:

Neel: (A
2mE = e /d@ (wz\/_> G5 [ 9(“’1)]0 = (reﬂ = SBH. (4.20)

w2 4G5

The boundary term does not contribute to the entropy because both /G and dp(w?) must
vanish at 8 = 0,7/2 to avoid singular geometry. To reach this conclusion, it is essential
to keep both contributions to the boundary term, one coming from ({.9) and the other

from (L.11).
4.2 Large black hole solutions

To find a large black hole solution to the near horizon equations, we need to determine the
dependence of the near horizon parameters on the size parameter v. For the non-derivative
terms, we expect that the results from the equal rotation case continue to hold.:

wi~1, wy~v, wy~v, el ~1, a® ~vT2, bé ~ . (4.21)

The derivatives Jypws, Opws and 8965, are already present in the minimal supergravity
solution, and we again assume the same dependence since all supergravity theories contain
the minimal one:

agwg/wg ~ 1, agwg/wg ~ 1, 8@bé ~ V. (4.22)

The remaining two terms, Jpw; and Og¢’, are somewhat subtle. In minimal supergravity
both of them are strictly zero, but in general they are expected to be non-zero. The two
should be of the same order in v, as can be seen from, for example,

1
20t = v = Qre'e’, (4.23)
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which is obtained by taking the leading terms of the Einstein equations (f.11), (E.13).
Very few explicit solutions with multiple charges and arbitrary rotations are known in the
literature; refs. [iJ] and [4] are the only examples we are aware of. In these references, all
the f-dependences of w; and ¢’ come in through the combination p? = 2 + ‘1109 + a289,
which implies that,

2sgcp(a3 — a?)

Opwy ~ aggpi ~ (4.24)

02
We will proceed by assuming that this 1/v? suppression is true of all large black hole
solutions and later confirm that this assumption is self-consistent.

It is now straightforward to examine the near horizon equations to the order equations
in 1/v. The first two components of the Einstein equations as well as the scalar and
Maxwell equations become quite simple.

2w = —% = Qrele’, (4.25)
Qry (e’ oV
—_— —14 - | = 4.2
Oy ( wi o07) (4:26)
\/_wg Qre’a® — Cryxe’ €®ogbf = 0. (4.27)

wl

The remaining equations (i.13) and ({4.14)) are also slightly simplified,

2
o (VG | L (VG %GU0Gw | Guatal  QuGTINAN o
wovVG VG 2w% 2w‘11 Zw% I
1 cd
Xab - §(G Xcd)Gab = 07
X = —=— |0y */aaeaab Gt (o6 Gy
VGws w2
2 I J
+2(Gaca )ideOZ ) n QIJaesaaebb' (4.29)

wy w3
The prediction from the fluid mechanics and the universal solution in the equal rotation
case obtained earlier lead us to look for a universal solution even in the unequal rotation
case. In fact, a straightforward computation shows that the following general solution
satisfies all the leading order near horizon equations:

2 2 2 d 2 2d92 2 a b
ds® = v} dt*> + — | + 27 2o+ Gup(0)Dg* D¢, (4.30)
1 —afcj — ajsg
Al = &ludt + bi(@)Dqﬁ“ (D¢ = d¢® + a’udt), (4.31)
where
4/ 2a0?2
(ozl, a2) = 2 1 (ag(l — a%), ay(1— a%)) , (4.32)
2 2
T Iy _ ~7T ai1sy 26
(b, bl) = ﬁabv(l_a%,l_a%>. (4.33)
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All the constants (v1,el,@,b!, ") are the same as in the previous section (B:33), (B-34).
The form of the metric, apart from the values of a%, has been taken from the minimal

supergravity solution (P.41]).

5. Discussions

5.1 Local entropy and charge densities

The universal rotation dependence predicted by fluid mechanics [[4] determines not only the
total entropy and charges but also their local density. Let us check how our computations
on the horizon compare with the fluid mechanics on the boundary.

From the solution (f.3(), we find the entropy and angular momentum densities

ds o So dJl o (a1 sin2 9)J0
sinfcosfdf (1 —a?)(l —a2)’ sinfcosfdd (1 —a?)2(1—ad)’

(5.1)

with Sy and Jy independent of f. The charges (J; have the same angle dependence as S.
The coordinates of [P4] we have been using is related to the manifestly asymptotically AdS
coordinate by [[4] ?

2 2\ 32 0 2 2 2 0
(r —; as) Zln  Peosty = (r* +a3) 020s ' (5.2)

72 sin? X =
When r,7 > 1, we can eliminate them to obtain the relation between the angles,

(1 — a2) cos? x

o’ = (1 —a?sin? y — adcos? x)' (5:3)
In terms of the x coordinate, the local densities take the form,
ds _ So
sin x cos xdy (1— a% sin? X — a% cos? x)? ’
dJq _ (ay sin? x)Jy (5.4)

sin x cos xdx (1— a% sin? X — a% cos? X)?”

which coincides precisely with the expressions obtained from the fluid mechanics in [[[4].

Note that this agreement is not quite trivial. The fluid mechanics computation was
performed over the round S? at the boundary of the AdS, while our computation was done
on the black hole horizon which has the shape of a squashed S due to the rotations. In
general, the map between a region of the fluid and the corresponding region on the horizon
could be quite complicated. Our result above shows that such a complication does not
occur to the leading order in the large black hole limit.

°The coordinate change is taken from eq. (141) of [@], which uses different names for the variables
(r,0;7, X)here = (¥,0;7,0)there and has a typographical error which we correct here.
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5.2 The h function

The entropy function formalism enables us to express the entropy S, angular momenta .J,
and electric charges Q7 in terms of the near horizon data without ever referring to the full
solution. In contrast, the mass F, angular velocity Q% and the electric potential ;! cannot
be computed in general from the near horizon data only.

In the large black hole limit, however, the simple mapping to the fluid mechanics we
have discussed so far enables us to write down (F, Q% u!) in terms of the near horizon
data. First, by comparing

s 203
S=(— 5.5
<4G) (1—a?)(1—a3) (5:5)
™ 1)3Q[J€J
= (= 5.6
@ <4G) 202(1 — a2)(1 — a2)’ (5:6)
T 201Q el b’ a 2a1
h=(55) son— o [ (5.7)
4G/ 8vi{(1 —af)(1 —a3) |1 —af
with the predictions of fluid mechanics, we note the identification,
M =a, Q2=ay, (5.8)
and the T"— 0 limit of the A function,
V20 Qrrelv’ a v3Qrse’ 213
T'h — ~— — — T301h — ————, T3 (4h —v'0rh : 5.9
- 64nGv? m= 167Gov?”’ ( v Orh) — 871G (59)

Next, since both J, and E are proportional to the function h with a universal rotation
dependence, we have

E— ( 7T> V20rQrselb’a [ 2a? 2a3

— 3. 5.10
4G/ 83 (1 —a?)(1 —ad) [1—a? 1—a%+ ] (5.10)

Note the estimate for the mean free path

1 v?
~ o —t 5.11
Q=0 U <QIJ€IbJa>, ( )

where the quantity in the parenthesis is generically of order one. So we confirm that the

S
A7 E

lmfp ~

fluid dynamics is indeed a good description in the limit of large v.
Finally, the chemical potentials are obtained by noting that, in the absence of rotation,
E = 211Qr should hold (see section 2.5 of [[4]):

u! = V2vab'. (5.12)

All gauged supergravity theories contain the minimal supergravity as a closed sub-
sector. The minimal supergravity admit large extremal black hole solutions. It is reasonable
to expect that, generically, small deformation away from the minimal supergravity will not
change the properties of the black hole drastically, as we confirmed in the two examples
above. Thus, large extremal black holes are rather generic objects in gauged supergravity.
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From the CFT point of view, this means that the zero temperature limit of the CFT
“fluid” is smooth; all physical quantities (S, J,, Qr; E, Q%, u!) remain finite as T approaches
zero. In order for E and J, to have a smooth limit as v; = uy/T become large, the h(v)
function should approach a homogeneous function of degree four in the leading order:

h(v) = hy(v) + (sub-leading), ha(Av) = Xh(v). (5.13)

Recall that the entropy S is proportional to 7°(4h — v;0rh). The leading term hy(v) does
not contribute to S. The only possible contribution to S could come from a homogeneous
function of degree three,

h(v) = hy(v) + h3(v) + (sub-leading), hi(Av) = A\Eh(v). (5.14)

In the U(1)? theory, up to an overall normalization, the h function and its “descen-
dants” are given by [[4]

LiLoL3 Li(1—Ly)
_ = 1
h (L1+L2+L3—1)47 VI Ll—l—Lg—l—Lg—l’ (5 5)
2L1L9L3 1—-L; I 2L1L5L3
Oorh = , 4h —v'Orh = . (5.16
! (L1+L2+L3—1)3 Ly v (L1+L2+L3—1)3 ( )

In the T — 0 limit, the three variables L; approaches the “extremal triangle” (>, L; =
1,L; > 0). In this limit, the leading behavior of the h-function is manifestly quartic in v
and it is straightforward to separate h4(v) explicitly:

2

ha(v) = = [2(vivs + v3vs + v3u7) — (U + vy + 13)] (5.17)

(1/1 + 9 + V3)(—V1 + vy +v3) (v —va+v3) (V1 + v — vs). (5.18)

N N

It is also not difficult to extract hs(v):

h3(v) = \/(—1/12 + v+ vd) (v — v+ )i+ 3 —v3)/2. (5.19)

It would be interesting to understand further the functions hy and hs from both the
supergravity side and the dual CFT side. From the supergravity point of view, these
functions can depend only on the parameters of the Lagrangian, namely, Crsx and X;. It
follows that, if h4 is a polynomial, then the coefficients in the expansion,

1
hy(v) = ﬁh[JKLI/II/JI/KI/L, (5.20)
should be constants composed of Crjx and X;. Unfortunately, it appears that hy is not
a polynomial in general. We have checked whether the hy of the conifold CFT example

discussed in section 3.2.4 can be expressed as a polynomial in ! and found the answer in
the negative.
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5.3 Future directions

The near horizon analysis performed in this paper should be regarded as a first step to
reveal the connection between the two holographic screens, namely, the black hole horizon
and the AdS boundary. There are several directions one may pursue further.

We restricted our attention to the extremal black holes only. It will be clearly useful
to do similar computations for black holes with non-zero temperature and make a more
comprehensive comparison with the fluid dynamics. Non-extremal entropy function of [[if]
may be useful in this regard.

The entropy function we obtained could be used away from the large black hole limit.
For instance, it could be used to explore the existence of supersymmetric black holes in
theories where no solutions have been constructed.

Finally, it would be interesting to compute the subleading corrections both in the
fluid mechanics and on the near horizon equations and see how the map between the two
changes. Recently, some progress in this direction was reported in [iff], where it was shown,
to the first subleading order, how the region of the fluid evolves in the radial direction in
the case of uncharged black branes. Incorporating electric charges and working in the
global AdS rather than the Poincaré patch, the corrections in the fluid mechanics could be
matched against corresponding corrections to the near horizon equations we obtained in
this paper. The systematic derivative expansion developed in [[l§—p{] would be helpful in
such an attempt. We hope to return to some of these questions in the near future.
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A. Chern-Simons contribution to the entropy function

A very general and thorough discussion of how to deal with Chern-Simons contributions
to the entropy function can be found in [[[]]. In our case, in essence, the correct procedure
amounts to maintaing the radial dependence of the variables b’ in the near horizon ansatz,

Al = &ludt + bl (03 + audt) = &l udt + bl 53,
FI = (& + ab")du A dt —bloy Aoy + (9,01 du A G5, (A1)

in the intermediate steps and setting b’ to constant only at the final step.
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Inserting ([A.1) into the Chern-Simons term of the Lagrangian,

we find

1
(167G)Lcs = —EC[JKFI/\FJ/\AK, (A.2)
(167G) Los = (167G) (Leg + LEg) (A.3)
(167G Lig = %C]JK(bla'gg)((é‘] + ab”?)dudt) (X oy 09)
_ —écle(ébebK + ab bV (dtducr o) | (A4)

1
(167G)LEg = SO 7k (ELudt) (8,07 ducs) (b5 o109)

1
= EC]L]KéIuau(beK)(dth,O'lO'ga'g)

1
= _ECIJKéIbeK(dtduo'l(TQ&g) + (total derivative). (A.5)

Adding the two terms and discarding the total derivative term, we obtain

(167G) Lcs = —Cryx <%~1beK + %abIbeK> (dtduci0263) . (A.6)

A naive evaluation of the near horizon action would fail to include the second contribu-

tion ((A.5). An alternative way to arrive at the correct answer ([A.G) is to take a dimensional

reduction along the o3 direction to make the problem effectively four dimensional [Bg].
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